Snail suppresses cellular senescence and promotes fibroblast‐led cancer cell invasion
نویسندگان
چکیده
Snail, a zinc finger transcription factor, induces an epithelial-mesenchymal transition (EMT) in various cancer and epithelial cells. We investigated the function of Snail (SNAI1) by downregulating its expression with short interfering RNA (siRNA). Suppression of Snail expression induced cellular senescence in several cancer cells and in normal fibroblast IMR90 cells. Cancer progression is facilitated by fibroblasts, so-called fibroblast-led cancer cell invasion. Snail-silenced cancer cells exhibited reduced motility, which was further decreased by cocultivation with Snail-silenced IMR90 cells. Our data suggest that cell motility and cellular senescence, which are regulated by Snail in cancer cells and fibroblasts, modulate fibroblast-led cancer cell invasion. Therefore, we propose that local suppression of Snail in cancer and the cancer microenvironment represents a potent therapeutic strategy.
منابع مشابه
MiR-493 suppresses the proliferation and invasion of gastric cancer cells by targeting RhoC
Objective(s):MiRNAs have been proposed to be key regulators of tumorigenesis, progression and metastasis. However, their effect and prognostic value in gastric cancer is still poorly known. Materials and Methods: Gastric cancer cell lines were cultured. Tissue samples obtained from 36 gastric cancer patients were used for quantitative real-time PCR (qRT-PCR) analysis. The tissue microarrays (T...
متن کاملUpregulation of lactate-inducible snail protein suppresses oncogene-mediated senescence through p16INK4a inactivation
BACKGROUND The preferential use of aerobic glycolysis by tumor cells lead to high accumulation of lactate in tumor microenvironment. Clinical evidence has linked elevated lactate concentration with cancer outcomes. However, the role and molecular mechanisms of lactate in cellular senescence and tumor progression remain elusive. METHODS The function of Snail in lactate-induced EMT in lung canc...
متن کاملSnail-Regulated MiR-375 Inhibits Migration and Invasion of Gastric Cancer Cells by Targeting JAK2
MicroRNAs (miRNAs) have been reported to play a critical role in cancer invasion and metastasis. Our previous study showed that miR-375 frequently downregulated in gastric cancer suppresses cell proliferation by targeting Janus kinase 2 (JAK2). Here, we further found that the expression level of miR-375 is significantly decreased in metastatic gastric cancer tissues compared with the non-metast...
متن کاملKnockdown of Radixin Suppresses Gastric Cancer Metastasis In Vitro by Up-Regulation of E-Cadherin via NF-κB/Snail Pathway.
BACKGROUND/AIMS Radixin has recently been shown to correlate with the metastasis of gastric cancer, but the pathogenesis is elusive. Adhesion proteins contribute to the regulation of metastasis, and thus this study sought to investigate the role of radixin in the migration, invasion and adhesion of gastric cancer cells, as well as its interaction with adhesion proteins in vitro. METHODS Radix...
متن کاملIn Vitro Evaluation of Protective Effect of Rutin on Acrylamide-Induced Cellular Senescence in NIH3T3 Cells
Background: Aging is one of the important factors in the development of age-related diseases. Acrylamide can be produced during carbohydrate-rich foods prepared at high temperatures. Recently, studies showed that acrylamide can induce cellular senescence. On the other hand, Rutin as a natural flavonoid, has a potent antioxidant activity. Objective: This study aims to evaluate the ptotective ef...
متن کامل